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Abstract: Suramin is a polysulfonated polyaromatic symmetrical urea. It is currently used to treat 
African river blindness and African sleeping sickness. Suramin has also been extensively trialed re-
cently to treat a number of other diseases, including many cancers. Here, we examine its modes of 
action and discuss its structure-activity relationships. 
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INTRODUCTION 

 Suramin (1) (also known as Germanin and Bayer-205) is 
a symmetrical polysulfonated polyaromatic urea. The hexa-
sodium salt (C51H34N6Na6O23S6, molecular weight 1429.2) is 
a highly water-soluble, hygroscopic pale pink powder. Its 
discovery in 1916 developed out of earlier observations that 
trypan red (2), and other dyes such as trypan blue (3) and 
afridol violet (4) [1], cured trypanosomiasis in mice [2]. The 
composition of suramin was kept secret by Bayer, until 
Fourneau and coworkers elucidated the chemical structure 
and published it in 1924 [3]. 

 Suramin has been used as an early stage treatment of 
trypanosome-caused onchocerciasis (African river blindness) 
and African trypanosomiasis (African sleeping sickness) 
since 1920 [4]. It is currently under clinical evaluation for its 
potential to regress a number of cancer cell lines, including 
non-small cell lung cancer, advanced breast cancer, hormone 
refractory prostate cancer, metastatic renal cell cancer, colo-
rectal cancer and high-grade gliomas [5-7]. Suramin’s in
vitro activity against HIV led to it being trialed in AIDS pa-
tients [8, 9]. Suramin binds to a large number of peptidic 
growth factors [10]. The extremely diverse range of biologi-
cally important molecules and cell lines that suramin has 
been reported to inhibit is, perhaps, due to its non-specific 
mode of binding [11]. As a result, however, its clinical appli-
cations are significantly limited because non-specific binding 
leads to side effects and high toxicity. Additionally, its great 
metabolic stability, long plasma half-life (41-78 days) and a 
relatively low therapeutic index are significant hurdles to 
overcome if members of this family of compound are to be 
more broadly developed as drugs [12-14]. 
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DISEASES TREATABLE WITH SURAMIN 

Malignant Neoplasms 

 In 1989 suramin was trialed on 15 patients against a 
number of metastatic cancers, with some encouraging results  
[15]. Its efficacy as a treatment for metastatic adrenocortical 
carcinoma was examined, with the authors concluding that 
suramin possessed antineoplastic efficacy in the treatment of 
this disease, but that its toxic side effects and narrow thera-
peutic window required strict monitoring of serum suramin 
levels in patients and made it unsuitable as a first-line treat-
ment for this carcinoma [16]. Although suramin caused sig-
nificant dose-dependent growth inhibition of human breast 
cancer cells in vitro [17-19], pilot studies which examined 
suramin’s efficacy in treating breast cancer revealed no tu-
mor responses [20, 21]. More recent work, however, has 
shown a marked enhancement of the anti-cancer effects of 
paclitaxel when co-administered with low-dose suramin to 
human MCF7 breast xenograft tumors in mice, leading to the 
initiation of phase I/II trials of paclitaxel and low-dose 
suramin combination in advanced metastatic breast cancer 
patients [22]. 

 Suramin has shown promise as a treatment option for 
hormone-refractory prostate cancer [23-30]. In 2000, a ran-
domized phase III trial comparing suramin plus hydrocorti-
sone to placebo plus hydrocortisone showed that moderate 
palliative benefit was achieved with suramin, and that time 
to disease progression was longer in patients who received 
suramin [5]. However, a later study by Rosen and coworkers 
was unable to confirm the previously reported high rate of 
activity and durability of remission achieved using suramin 
[31]. Kaur and coworkers [14], and Autorino and coworkers 
[32] have critically reviewed the phase II and phase III clini-
cal trial outcomes of suramin in the treatment of prostate 
cancer. A 1992 study of the effectiveness of suramin in treat-
ing advanced platinum-resistant ovarian cancer showed that 
some patients experienced disease stabilization and clinical 
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improvements [33]. Suramin caused significant dose-depen-
dent growth inhibition of rat pancreatic tumors in vivo [17]. 

 The effect of suramin on the human esophageal squamous 
cell carcinoma cell line KEsC-II was studied. Cell prolifera-
tion was stimulated at low concentrations of suramin, and 
inhibited at high concentrations, with the effects suggested to 
arise via phosphorylation of epidermal growth factor (EGF) 
receptors [34]. Suramin inhibits the growth of human rhab-
domyosarcoma [35]. The mechanism of action in this case 
was determined to be the interference of the binding of insu-
lin-like growth factor II (IGF-II) to the type I IGF receptor, 
thereby interrupting the IGF-II autocrine growth in these 
cells [35]. Similarly, suramin inhibits the growth of non-
small cell lung cancer cells that express EGF receptors, and 
suramin was shown to inhibit, in a concentration-dependent 
manner, the binding of EGF to its receptors in these cells 
[36]. A 2000 study evaluated the activity of suramin and a 
number of its analogues against a panel of human tumor cell 
lines and in primary cultures of tumor cells from patients, in 
an attempt to identify the suramin pharmacophore so as to 
develop suramin analogs with improved therapeutic ratios. 
These studies suggested that the pharmacophore for cytotox-
icity was different for tumor cells from patients and for cell 
lines. It was also shown that suramin and its analogs were 
insensitive to a number of drug resistance mechanisms [37]. 

Onchocerciasis 

 Onchocerciasis (African river blindness) is caused by 
Onchocerca volvulus, a parasitic worm that is transmitted by 
blackflies of Simulium species, and is very long-lived in the 
human body. It is endemic in many countries in Africa and 
Latin America. The disease results in a number of morbi-
dities, including blindness, skin rashes, lesions, intense itch-
ing and skin depigmentation [38]. Suramin has been used 
since the 1920s as an anthelmintic to treat onchocerciasis [4, 
39]; however, it has now been largely superseded by iver-
mectin (5) [40]. Nevertheless, suramin remains the only drug 
in clinical use for the treatment of onchocerciasis that is ef-
fective against adult worms. 

Trypanosomiasis 

 Trypanosomiasis (African sleeping sickness) is a disease 
of humans and cattle endemic in regions of sub-Saharan Af-
rica. It is caused by a trypanosome (a parasitic protozoon of 
Trypanosoma species) and is transmitted by the tsetse fly. 
Left untreated, it is invariably fatal [41, 42]; the World 
Health Organization estimates that there are 40,000 mortali-
ties per year [41]. Suramin and pentamidine (6) have been 
used as an early stage treatment of trypanosomiasis (before 
the parasites invade the central nervous system (CNS)) since 
1920 [4, 43]. Eflornithine (7) and the arsenic-containing 
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drug, melarsoprol (8), are used for later stages of the disease 
when the parasites are established in the CNS. 

 Suramin accumulates only slowly in trypanosomes, and it 
has been suggested that uptake of this drug occurs via endo-
cytosis bound to low-density lipoprotein [44]. Its mode of 
action against trypanosomes is unknown. 

Toxicity 

 The toxic effects of suramin are well documented [14]. 
Clinical trials of suramin in cancer patients have uncovered 
frequent toxic side effects, including proteinuria, reversible 
liver toxicity, cornea damage such as vortex keratopathy, 
adrenal insufficiency, coagulopathy, and reversible acute 
demyelinating polyneuropathy [15]. A trial of suramin’s ef-
ficacy in treating metastatic adrenocortical carcinoma, in 
which the drug was administered for periods of up to 15 
months, reported serious side effects in patients, including 
coagulopathy, thrombocytopenia, polyneuropathy and aller-
gic skin reactions. The deaths of two patients in that trial 
were suggested by the authors to be possibly related to sura-
min therapy [16]. In a clinical trial of hormone-refractory 
prostate cancer, the most commonly encountered side effect 
was fatigue but, again, a fatality due to idiosyncratic myelo-
suppression (grade V) was observed in one patient [31]. An-
other trial of suramin’s efficacy against metastatic prostate 
cancer reported frequent ocular symptoms such as corneal 
deposits and lacrymation [45]. Skin reactions to suramin are 
common, most usually pruritus or urticaria, but fatal toxic 
epidermal necrolysis has been reported [46, 47]. The most 
common dose-limiting toxic effects are malaise and lethargy 
[48], and neurotoxicity [49]. Suramin has been shown to 
prevent and terminate pregnancy in mice [50]. 

 Suramin is notable for its very high (99.7%) serum pro-
tein binding, its very long half-life (41-78 days [6]), and high 
metabolic stability [51]. Suramin’s volume of distribution is 
31-46 litres and 80% of the drug is excreted renally [52]. 

MODES OF ACTION 

Interaction of Suramin with Proteins 

 The anti-tumor activity of suramin [34, 53] has been pro-
posed to stem from either its binding to essential growth fac-
tors (antagonizing the ability of these factors to stimulate the 
growth of tumor cells in vitro [15]), inhibition of protein 
tyrosine phosphatases, inhibition of angiogenesis, or a com-
bination of these three processes [35, 36, 53-57]. In fact, two 
of these mechanisms are probably interconnected, as several 
reports have noted that the known angiostatic activity of 
suramin is at least in part related to fibroblast growth factor 
(FGF) binding and inhibition [58-64]. Table 1 summarizes 
the growth factors and enzymes that have been shown to be 
inhibited by, or bind to, suramin. 

FGF Binding 

 Suramin’s ability to block the binding of fibroblast 
growth factor (FGF) to its receptor (FGFR) is of particular 
interest, because this event is fundamental in the process of 
angiogenesis. The FGFs comprise a family of proteins which 
are required for a variety of biological processes including 
cell growth and movement, differentiation, and protection 
from cell death [101-103]. They function by interacting with 
their cognate receptor (FGFR), which is a transmembrane 
protein possessing an extracellular FGF/heparin ligand bind-
ing region and an intracellular tyrosine kinase domain [104]. 
Activation of the receptor and subsequent signal transduction 
occurs when two FGF:FGFR complexes dimerize [105]. 
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Heparin is required for dimerization to occur because it is 
able to bind to both FGF and FGFR, thereby strengthening 
the ternary complex formed on the cell surface [103]. Two 
crystal structures of the FGF:FGFR:heparin ternary complex 
exist, but they differ significantly, and there is uncertainty 
regarding which of these structures (if either) best represent 
the biologically relevant structure of the complex [103]. 

 It is clear that the inhibition of FGF activity by suramin 
results from the formation of a complex with FGF, not from 

a direct interaction with FGFR [106]. It is also highly likely 
that suramin binds at or near to the heparin binding site, 
since heparin physically disrupts suramin-FGF complexes 
and counteract the angiostatic effects of suramin [59, 61, 63, 
107-110]. Marchetti’s group has also reported that suramin 
inhibits heparanase, a glucuronidase whose activity corre-
lates with the metastatic propensity of tumor cells [74]. 

 A solution structure of FGF-1 complexed with l,3,6-
naphthalenetrisulfonate (NTS) (9) showed that NTS weakly 
and heterogeneously bound to the heparin binding site of this 
growth factor [111]. NTS has been shown to have angiostatic 
activity and, according to Lozano et al. [111], it can be con-
sidered a minimal model for suramin action. In another study 
by the same group, the crystal structure of FGF-1 in complex 
with 5-amino-2-naphthalenesulfonate (ANS) (10) was solved. 
The solved structure revealed a 1:1 stoichiometric ratio of 
FGF-1 to ANS, with ANS bound to the positively-charged 
heparin binding site of FGF-1 [112]. 

 Two recent studies have published evidence not in con-
cord with previous models on suramin’s interactions with 
FGF. Ganesh et al. reported the crystal structure and inter-
molecular interactions of a 1:1 complex of suramin with the 
heparin-binding site in vaccinia virus complement control 
protein (VCP), which is geometrically similar to many hepa-
rin-binding proteins, including FGF [97]. The authors were 
able to compare this crystal structure with the crystal struc-
ture of the heparin-VCP complex, and so determine that 
suramin interacts with a single heparin-binding site in VCP 
[97]. This study showed significant differences in the orien-
tations of the naphthalene rings (end groups of suramin) rela-
tive to the configuration of binding of NTS and ANS to FGF 
as described in previous studies [111, 112]. Ganesh and co-
workers also noted that superimposition of each of the naph-
thalene rings in suramin, from the crystal structure [97], on 
the naphthalene rings in ANS and NTS complexes [111, 
112] resulted in suramin either having severe steric clashes 
with the FGF or no interaction beyond the naphthalene ring. 
They concluded therefore that the structural information 
gained from the ANS and NTS complexes was of limited use 
in elucidating the mode of binding of suramin to FGF. 

 Using isothermal titration calorimetry, Kathir et al. [113] 
suggested that human FGF-1 (hFGF-1) binds to two mole-
cules of suramin with nanomolar affinity. This ternary com-
plex subsequently oligomerizes to form a stable inactive 
tetramer which is incapable of binding to the receptor (Fig. 
(1)). The binding of the suramin molecules to hFGF-1 was 
shown to occur simultaneously at specific sites on the pro-
tein, inducing a conformational change and revealing sol-
vent-exposed hydrophobic residues at the surface. Formation 
of the inactive tetramer then occurs due to the hydrophobic 

Table 1. Enzymes and Growth Factors Inhibited by Suramin 

Enzyme/Growth Factor  References 

DNA polymerase [65] 

Reverse transcriptase [9, 66-68] 

Topoisomerase-I and Topoisomerase-II [69-71] 

ATPase [72, 73] 

Heparanase [74] 

Protein tyrosine phosphatases (PTP) [55, 75] 

Protein kinase C [76, 77] 

Phosphoglycerate kinase [78] 

Diacylglycerol kinase [79] 

NAD+-dependent histone deacetylases (surtuins) [80] 

Phosphatidylinositol kinase [79] 

G-Protein coupled receptor kinases [81] 

Ionotropic adenine and uracil 5 -nucleotide (P2X/P2Y) 

receptors 

[82-84] 

Bothrops asper venom phospholipase A2 (PLA2) [85] 

Fibroblast growth factors (FGFs) [63, 86, 87] 

Platelet-derived growth factor (PDGF) [88, 86] 

Epidermal growth factor (EGF)  [15, 36, 86] 

Transforming growth factor-beta (TGF- ) [15, 86] 

Insulin-like growth factor II (IGF-II) [35] 

Androgen-induced growth factor (AIGF) [89, 90] 

Nerve growth factor (NGF) [91] 

Heparin-binding growth factor type-2 (HBGF-2) [86] 

Follicle-stimulating hormone (FSH) [92] 

Interleukin-2 (IL-2) [93] 

Interleukin-6 (IL-6) [94] 

Tumor necrosis factor-alpha (TNF ) [95, 96] 

Vaccinia virus complement control protein (VCP) [97] 

Plasmodium falciparum merozoite surface protein-1 [98] 

Triosephosphate isomerise (TIM) reactivation [99, 100] 
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attraction between the transiently exposed non-polar sur-
faces. Further NMR experiments revealed that suramin binds 
to residues of FGF that are involved in binding to heparin, as 
well as residues involved in binding to the FGFR. These two 
binding sites are separated by a distance of ~32 Å which 
suggested that a single molecule of suramin with a length of 
~24 Å could not bind simultaneously to both sites [113]. 

Structure-Activity Relationships of FGF Binding 

 There have been a number of studies in which suramin 
analogs were prepared to determine structure-activity rela-
tionships (SARs) for suramin-FGF binding. These studies 
focused on a number of aspects of the structure of suramin, 
including the length and rigidity of the molecule, the nature 
of its end groups, its symmetry, the central urea group, and 
its methyl substituents [12, 37, 58, 62, 106, 112, 114-119]. 
The results of these SAR studies often differ from those di-
rected at HIV (reverse transcriptase inhibition) [120], try-
panosomiasis [121], the P2 receptor [84], or class III histone 
deacetylases (surtuins) [80]. 

 The major deficiency in most of these studies is that they 
focused on the potential angiostatic or anti-cancer activities 
of suramin analogs, which are consequences of complex 
processes rather than the effect resulting from the direct 
binding of suramin to FGF or its receptor [58, 62, 106, 115-
119]. Therefore, structure-activity relationships derived from 
these investigations do not necessarily mean that activity 
against proliferation and differentiation was through the in-

hibition of FGF by suramin. Furthermore, the SAR study 
summarised by Fig. (2) were obtained from different studies, 
many employing different cell lines (Table 2), so biological 
activity observed for a particular functional group in one 
particular cell line may not necessarily confer activity in a 
different biological context. 

Length and Symmetry of Suramin 

 Several SAR studies have noted that a minimum molecu-
lar length of suramin analogs was required for activity, so 
that compounds without at least one aromatic “spacer” posi-
tioned symmetrically either side of the central urea group 
had little or no biological effect compared to suramin itself 
[12, 58, 62, 106, 114, 117]. The spacing between the anionic 
binding sites in FGF is ~32 Å and thus these pockets require 
inhibitors in which the two anionic end-groups are similarly 
separated. 

 Molecular symmetry does not appear to be a requirement 
for inhibitory activity in suramin analogs, since some asym-
metric compounds were found to have similar activity to 
suramin [106]. However, these compounds still satisfied the 
minimum length requirement for an inhibitor. Most analogs 
tested have been symmetrical due to ease of synthesis. Inter-
estingly, some studies showed that smaller, asymmetric com-
pounds containing a naphthalenesulfonate moiety had anti-
proliferative or angiostatic activity against FGF-promoted 
cell lines [83, 111, 112, 115, 118]. 

Fig. (1). Cartoon representing the primary mechanism by which suramin inhibits FGF-1. Reprinted with permission from Kathir, K. M. et 
al., Biochem., 2006, 45, 899-906. Copyright 2006 American Chemical Society [113]. 

Table 2. Assays Used for Suramin and its Analogs 

Type of Assay Specific Assay References 

Inhibition of cell growth (various cell lines including carcinomas) [37, 58, 112, 115-

118] 

Observation of tumor colon cancer cell differentiation [119] 

Cell 

proliferation/tumor growth inhibi-

tion 

Mouse in vivo tumor growth inhibition [118] 

Neovascularization of the chorioallantoic membrane (CAM assay) [12, 62, 106, 114-

116, 118] 

Mouse angiogenesis assay – sponges implanted in backs of mice and evaluated for angio-

genesis 

[12, 58, 106, 112, 

114] 

Angiogenesis inhibition 

Microcarrier angiogenesis assay [117] 

Inhibition of FGF-2-stimulated bovine adrenalcapillary endothelial cell [3H]methyl-

thymidine uptake 

[58] FGF binding inhibition 

Inhibition of specific 125I-FGF-2 binding to FGFR [12, 58, 106, 114] 
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Rigidity 

 Suramin displays a high degree of rigidity due to the con-
jugated nature of the molecule. Modelling studies of suramin 
and structurally related molecules belonging to the suradista 
family (Fig. (3)) showed that in solution the compounds 
preferentially adopt a symmetrical, extended, quasi-planar 
arc shape with a distance between the two naphthalenesul-
fonate units of either 16-20 or 24-30 Å [12, 78, 114, 122]. 
Several reports have shown that the molecular rigidity of 
suramin is essential for inhibitory activity. Replacement of 
the central urea group or the aromatic spacers with more 
flexible aliphatic groups translated into a sharp decrease in 
activity [12, 62, 117]. Interestingly, Ganesh et al. have sug-
gested that suramin experiences much greater conforma-
tional flexibility in solution than is generally believed, and 
they noted that suramin adopts a helical (non-planar) con-
formation in the crystal structure of the suramin-VCP com-
plex [97]. 

Nature of the Aromatic Anionic Region 

 All SAR studies of suramin analogs agree on the neces-
sity for anionic aromatic regions at each end of the com-
pound [12, 37, 58, 62, 114-117]. While sulfonates have been 
the default choice of anionic group, a few studies at least 
have suggested that the aromatic portion can contain anionic 

groups other than sulfonates. Analogs where the sulfonates 
were replaced with carboxylates (e.g. 11 and 12) were found 
to display activity [115], as were analogs, such as 13, incor-
porating phosphonate groups [37]. 

 The aromatic end group need not necessarily be a naph-
thalene derivative because several studies have found that 
analogs such as 11-13, or those containing benzene monosul-
fonic acid groups were also active. For these compounds 
Gagliardi et al. demonstrated a reduced efficacy in the CAM 
assay (Table 2, 7-26% inhibition compared to 64% inhibition 
for suramin) [62]. However, in studies by Firsching et al.
[116, 117] and Kreimeyer et al. [115], analogs containing 
benzene monosulfonic acids had comparable activities to 
suramin in the majority of assays. Several studies altered the 
number of sulfonate groups (suramin contains six, three at 
each end) with varying results [12, 58, 62, 106, 112, 114, 
116, 117]. While several benzene monosulfonic acid deriva-
tives were found to display reasonable activity (see above), 
many studies argued that analogs required at least four sul-
fonate groups for good activity, with six required for activity 
comparable to that of suramin [12, 62, 106, 114, 116]. The 
majority of reports agreed that the actual positions of the 
sulfonate groups on the aromatic rings did not significantly 
affect activity [58, 62, 115-117]. 

Fig. (2). Summary of the structure-activity relationships of suramin. 

Fig. (3). General structure of the suradista family [123]. 
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 It should be noted that suramin analogs with fewer ani-
onic groups have been shown in several studies to be signifi-
cantly less toxic in mice [12, 114-117]. 

OTHER STRUCTURAL FEATURES 

 Several studies of anti-proliferative activity or FGF bind-
ing, have reported that the removal of the methyl groups of 
suramin did not affect inhibitory activity [12, 37, 62, 114, 
116, 117, 122]. This contrasts the loss of trypanosomiasial 
activity when the methyl groups are omitted [3]. One study, 
in which the methyl groups of suramin were replaced with 
isopropyl groups, reported a increase in activity of the inhibi-
tion of cell growth in bovine FGF-stimulated porcine pulmo-
nary artery endothelial cells (IC50 of 189 M compared to 
suramin’s IC50 of 521 M) [4]. 

Amide Groups 

 No SAR study has systematically examined the roles of 
the amide groups of suramin, although one analog, NF279 
(14), in which the amide groups were repositioned para-
relative to the central urea group, showed high activity (the 
methyl groups were also removed) [37, 80, 82]. This defi-
ciency of studies is despite the fact that amides are fre-

quently involved in hydrogen bonding, one of the important 
means by which drugs can bind to their targets. It is thereby 
possible that one, or more, of the amide groups or the central 
urea group could be playing an essential role in the in vivo
activity of suramin. 

SUMMARY AND FUTURE PROSPECTS 

 Suramin binds to, and inhibits, a large number of en-
zymes and growth factors. This lack of specificity of binding 
limits its application as a clinical drug, and results in a broad 
range of toxicities and side effects. Although suramin re-
mains useful for the treatment of onchocerciasis and try-
panosomiasis, new drugs or improved analogs are needed to 
treat these diseases, as resistance to existing drugs increases. 
Suramin’s promise as an anti-cancer drug has not yet been 
fulfilled. Suramin’s role as an anti-angiogenesis agent ap-
pears to be related to its structural similarity to heparin, and 
its ability to inhibit the formation and dimerization of the 
FGF:FGF:heparin ternary complex. Structure-activity rela-
tionship studies of suramin have revealed much about its 
pharmacophore, but the development of suramin analogs as 
drugs will require candidates with much higher selectivities, 
and much lower toxicities. 
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ABBREVIATIONS 

AIGF = Androgen-induced growth factor 

ANS = 5-Amino-2-naphthalenesulfonate 

CAM = Chorioallantoic membrane 

CNS = Central nervous system 

EGF = Epidermal growth factor 

FGF = Fibroblast growth factor 

FGFR = FGF Receptor 

HBG = Heparin-binding growth factor 

IGF = Insulin-like growth factor 

NGF = Nerve growth factor 

NTS = l,3,6-Naphthalenetrisulfonate 

PDGF = Platelet-derived growth-factor 

PTP = Protein-tyrosine phosphatase 

SAR = Structure-activity relationship 

TGF = Transforming growth factor 

VCP = Vaccinia virus complement control protein 
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